Towards Cloud-Driven Autonomous Vehicles

Peter Schafhalter

pschafhalter@berkeley.edu

NVIDIA H100 GPU

Image courtesy of NVIDIA

- Cutting-edge GPU
- Trains powerful ML models
- Costs <mark>\$30,000</mark>

Tesla Model 3

Image courtesy of Tesla

- EV with limited selfdriving capabilities
- Software updates
- Costs <u>\$30,000</u>

• Median: 68 ms

• Median: 68 ms

• Median: 68 ms

- Median: 68 ms
- 99th percentile: 3027 ms

The Network is Key to Self-Driving

Opportunity: Cloud resources are faster and more plentiful than processors designed for the car

Challenge: How to manage the network?

2023-10-02

Managing Network Reliability

Availability

2023-10-02

Managing Network Reliability

Availability

Connection Quality latency, bandwidth

Impact: Avoid Collisions with Cloud

Detecting a traffic jam with DETR-ResNet-101

2023-10-02

The Network is a Scarce Resource

The Network is a Scarce Resource

Network latency factors: Round trip latency

The Network is a Scarce Resource

Allocating Bandwidth

Allocating Bandwidth

Prioritizing Services

Prioritizing Services

Prioritizing Services

Open Problems

Generating utility curves various services.

Open Problems

Generating utility curves various services.

Combining utility curves across (sub)services.

Open Problems

Generating utility curves various services.

Combining utility curves across (sub)services.

Dynamic utility curves when the benefit of the cloud changes.

Autonomous Driving 💙 Cloud

>Network is the bottleneck

Manage network via systems approaches

Speculative execution to address connectivity, connection quality

Bandwidth allocation to share network

