Towards Cloud-Assisted Autonomous Driving

Alexander Krentsel, Peter Schafhalter, Joseph E. Gonzalez, Sylvia Ratnasamy, Scott Shenker, Ion Stoica UC Berkeley, <u>akrentsel@berkeley.edu</u> \bigcirc \square NETSYS \checkmark Sky

Autonomous Vehicle Pipeline

• AV control system comprises Compound AI system of distinct ML-based modules executing tasks.

Accelerate inference to run more accurate models, or the

same models in less time

5G Networks Are Fast

Can transmit sensor data in real time

Manage network reliability

Handle connectivity, bandwidth, and latency fluctuations

Maximize cloud benefit

Prioritize critical services that gain the most from the cloud's capabilities

AV Requirements

• AVs target maximizing safety, which translates to maximally accurate individual components, which requires:

Network Reliability

- Network properties have high variance across location/time
- In San Francisco, latency:

Urban w/ AVs Overal

400

2019 2020 2021 2022 2023 2024

Varying Cloud Benefit

- Each service gets variable benefit from leveraging the cloud
- Based on model resource requirements and relative accuracies
- Feasibility depends on bandwidth available

↑ bandwidth \Rightarrow ↓ network time \Rightarrow ++ cloud compute time Not enough bandwidth to use cloud for all services

High Fidelity Data Better information for decision-making

State-of-the-Art Computation To enable running the most accurate models

Timely Results Run in real-time to beat human reaction times

Human reaction time SLO: 390ms [0] to 1.2s [1]

Compute Hardware

- Compute and data determine runtime and accuracy.
- State-of-the-art compute on-car is NVIDIA's Jetson Orin [2].

Limited in AVs

physical constraints include power, cooling, stability

贯

Specialized data centers, frequent hardware upgrades

Powerful Cloud HW

Plentiful in Cloud

Can run highly accurate models in real time

- Fast median: 68ms Long Tail: 3027ms [99th] 500
- Uplink BW configured low by operators, 10-150Mbps.

- - must choose best subset to offload to cloud

Goal: allocate bandwidth to subset of services that (1) can feasibly run in cloud and (2) get maximal benefit

EfficientDet Models		Network	Remaining Computation
Model Nan	ne Input Size	Latency (ms)	Time (ms)
ED0	512x512	44.84	105.16
ED1	640x640	47.56	102.44
ED2	768x768	50.89	99.11
ED3	896x896	54.82	95.18
ED4	1024x1024	59.36	90.64
ED5	1152x1152	64.50	85.50
ED6	1280x1280	70.25	79.75
ED7	1536x1536	83.56	66.44

Assuming 40ms ping and 100 Mbps bandwidth, latency consumed by each of the EfficientDet [5] family of models

A Tiered Approach

- Structure the AV pipeline as having tiers of execution for each service
 - Each tier has access to different resources
 - Local tier is 0 cost, cloud cost is bandwidth required to transmit input quickly enough to complete within deadline

Utility curves to capture bandwidth benefit

- Extract bandwidth utility curves based on service target latency SLO and accuracy of each model, adapting from Cao & Zegura's Utility curve model [3]
- Compose utility curves [6] to get overall service utility curve

Allocate bandwidth to maximize total utility

- Alternatively can do max-min fair allocations, or other allocation based on policy
- Always run on-car model for reliability

[0] B. Wolfe, B. Seppelt, B. Mehler, B. Reimer, and R. Rosenholtz, "Rapid holistic perception and evasion of road hazards." Journal of experimental psychology, 2020.

[1] G. Johansson and K. Rumar, "Drivers' brake reaction times," Human factors, vol. 13, no. 1, pp. 23–27, 1971.

[2] "NVIDIA Introduces DRIVE AGX Orin," https://tinyurl.com/6pjsxzw7.

[3] Zhiruo Cao and E W Zegura. Utility max-min: an application-oriented bandwidth allocation scheme. In IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies.

[4] P. Schafhalter, S. Kalra, L. Xu, J. E. Gonzalez, and I. Stoica, "Leveraging cloud computing to make autonomous vehicles safer," in 2023 IEEE/RSJ IROS, pp. 5559–5566.

[5] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [6] Alok Kumar et. al BwE: Flexible, hierarchical bandwidth allocation for WAN distributed computing. In Proceedings of the 2015 ACM SIGCOMM '15, pages 1–14, New York, NY, USA, August 2015.