
The Sky is the Limit: Cloud-Assisted Autonomous Driving via Service Tiers

Alexander Krentsel Peter Schafhalter Joseph E Gonzalez
Sylvia Ratnasamy Scott Shenker Ion Stoica

1 INTRODUCTION
Autonomous driving is a transformative AI application with the
potential to save lives by eliminating human error from driving [1],
provide mobility to millions impacted by disabilities [7], and in-
crease economic productivity by improving traffic flow [13]. While
industry has made remarkable progress towards deploying au-
tonomous vehicles (AVs) [2], key challenges remain in ensuring
high performance and coordination of the components comprising
the autonomous driving system.

AV driving systems are typically structured as a pipeline [12, 18]
containing the following components [4, 10], as shown in Fig. 1:

• Perception runs machine learning models to extract infor-
mation from the sensor readings generated by cameras and
LiDARs.

• Localization uses GPS and high-definition mapping to com-
pute the vehicle’s precise location.

• Prediction forecasts how nearby objects (e.g., other vehicles,
pedestrians) will behave and move.

• Planning generates a safe and comfortable motion plan for
the vehicle to take.

• Control converts a motion plan into steering, acceleration,
and braking commands.

These components are made up of modules implemented with
machine learning as well as traditional algorithms, and must coor-
dinate to perform safe and comfortable driving maneuvers. This
design describes a compound AI system [15], and has evolved this
way due to the close interaction with human agents and regulation
which requires them to be highly explainable and debug-able [3, 10].

Unlike compound AI systems for language models, which op-
erate at scale and target throughput and statistical Service-Level
Objectives (SLOs), AVs must meet a higher bar for reliability and
performance and are latency-optimized. The strict target latency
SLO decomposes into deadlines for individual components [9] that
must be met for safe operation. For reliability, the system runs
entirely on the car with no external dependencies, though they
typically have network access through cellular connections.

We observe that these modules, with explicit dependencies and
target SLOs, have similarities to cloud-based microservice archi-
tectures, and investigate the implications of viewing components
in AVs as services. This allows us to reason about components in
terms of SLOs, configurations, and contracts which provides clear
APIs and guarantees across components. This ensures a degree
of minimum performance and enables modular development to
accelerate improvements.

Taking implications of modularity to the extreme, we can imag-
ine multiple variants of these services that provide different perfor-
mance guarantees (e.g. model specialized for city vs. model special-
ized for cloud, low-latency models for quick decision-making). If
we accept that AVs are a collection of services with many different
beneficial configurations, we could optimize the overall pipeline

Cameras (19x)

LiDARs (5x)

GPS (1x)

Sensors

Control
Motion 
Prediction

Perception

Object Tracking

Lane 
Detection

Route 
Planning

Trajectory 
Planning

Planning

19 MB/s

10 MB/s

Localization

Object
Detection

Figure 1: A view of the components in an AV control system. One Object
Detection module in the perception component is outlined in red.

by selecting the best possible configuration. Unfortunately, we are
unable to fully exploit this capability today because AVs are con-
strained by fixed, scarce hardware resources [12]. To solve this, we
innovate on the execution environment; in particular we propose
that AVs can take advantage of cloud-based execution to use more
powerful GPUs that enable more beneficial services, run models
faster, and deploy updates more easily.

These decisions have far-reaching implications. First, cloud exe-
cution requires managing an additional constrained resource, net-
work bandwidth, which is not plentiful enough to support remote
execution of all services. Second, optimal per-service configurations
may result in sub-optimal system-wide performance (i.e., overall
driving system is stuck in a local minimum). Finally, cloud execution
introduces new sources of unreliability that must be managed to
maintain reliable overall performance. We propose a tiered service
architecture which configures services by maximizing the bene-
fit each service contributes to the overall AV while meeting the
resource constraints.

2 A TIERED APPROACH
Several components or "services" in the AV pipeline have multiple
possible configurations that provide the same functionality but with
different tradeoffs in runtime, accuracy, compute requirements, and
input fidelity. For example, the EfficientDet [16] family of object
detectors solve the same object detection task but range in their
input size, accuracy, and runtime across 8 model variants, ED0
through ED71. We define a "configuration" to be the selected model
variant used to satisfy the service. In Fig. 2a, we show this view for
the Object Detector service shown in red in Fig. 1.

Existing AVs are designed with statically configured components.
A single model variant is selected for each component for execution
on pre-allocated resources to ensure a consistent and reliable exe-
cution environment. While prior work has explored re-configuring
components to maximize safety [9], these possibilities are funda-
mentally limited by the fixed hardware available on the vehicle.

1This has also become the dominant paradigmwith foundationmodel releases, multiple
size models (e.g. 7B, 13B, 70B) that provide the same service [5, 8, 17].



Service: Camera 1 Detection 

Image Bounding 
Boxes

[Latency SLO: 150ms]

Model 1
On-Car, runtime=120ms, acc=45%

Model 2
Cloud, runtime=60ms, acc=48%

Model 3
Cloud, runtime=95ms, acc=52%

(a) The multiple model variants available for the detection service for the front
camera. Each service would have its own view.

bandwidth

ut
ilit

y Model 2

bandwidth

ut
ilit

y Model 3

bandwidth

ut
ilit

y Model 1
bandwidth

ut
ilit

y Cloud Tier

bandwidth

ut
ilit

y Car Tier
bandwidth

ut
ilit

y Overall Service

(b) The utility curves derived for each model, which compose upward to form
per-tier utility curves and finally an overall service utility curve.

Figure 2: A view of a single tiered service, with the on-car tier in yellow and cloud tier in green. An AV system is then made up of dozens of such services.

In contrast, viewing AVs as collections of services offers an op-
portunity to selectively expand the execution environment beyond
the hardware available on a vehicle (e.g., using the cloud). The ad-
ditional cloud "tier" of execution environment enables transparent
access to powerful cloud resources for more compute at the cost of
worse reliability and additional latency. Previous work has observed
that typical AV models such as object detection can run 3-4x faster
on cloud hardware as compared to AV hardware [14], indicating
that the cloud can run more powerful models while offsetting net-
work latency in order to meet latency SLOs. To guard against the
unreliability of the network, we always execute a model on-vehicle,
and greedily use more accurate results from the cloud if they arrive
in time.

The challenge is that bandwidth to the cloud is limited and highly
variable. As a result, the optimal decision of which services to exe-
cute in which tier, and which model to use in that tier, is a dynamic
optimization problem depending on the available cellular uplink
bandwidth at runtime and each service’s expected accuracy gain.
Executing a service remotely incurs variable additional network
latency, but benefits from lower execution latency by running on
cloud hardware. For the cloud tier, the total latency incurred is

𝑙𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑡𝑚𝑜𝑑𝑒𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 + 𝑙𝑅𝑇𝑇 + 𝐵 ∗ 𝑆𝑖𝑛𝑝𝑢𝑡 (1)
where 𝑙𝑅𝑇𝑇 is ping round-trip time, 𝐵 is bandwidth, and 𝑆𝑖𝑛𝑝𝑢𝑡 is

input size. Unlike allocating compute resources which are static on
the car for AV control systems, bandwidth is a scarce resource that
is highly dynamic; 5G deployments support bandwidths of up to
hundreds of Mbps, but with high variance based on number of users
on the network, proximity to tower, interference, etc. Evaluating
public speedtest data from mobile devices, we find mobile device
bandwidth in the US in 2024 to range from 5Mbps - 100 Mbps2 with
ping latencies of 15-75ms.

With this bandwidth range, we cannot afford to offload all ser-
vices. A standard JPG used as input to the EfficientDetector family
of models [16] ranges from ranges from 0.5Mb (ED0, 512x512) to
4.3Mb (ED7, 1536x1536). With an optimistic bandwidth of 100Mbps
and ping of 20ms, and a service target latency SLO of 150ms, the
network portion of uploading these JPGs adds 24ms (ED0) - 63ms
(ED7) of additional latency, leaving 126ms - 87ms respectively for
2This value is configurable to be considerably higher; 4G/5G networks today offer
5-10x higher (up to 500Mbps+) downlink bandwidth than upload due to usage patterns.
The underlying spectrum could easily be reallocated to favor higher upload bandwidth.

model runtime in the cloud if offloading just one service. Sharing
that bandwidth amongst three off-loaded services would consume
32ms - 149ms. Therefore, we clearly cannot offload all 20+ detector
services, let alone all services in the AV system, and likewise equally
sharing bandwidth across all services would result in no individual
service being able to use the cloud tier.

To solve this problem, we build on the idea of utility curves
for bandwidth allocation introduced and used in past work [6, 11],
which encode how much utility an application gets per unit of ad-
ditional bandwidth. To adapt these to our use-case, we observe that
each model must return results within the target latency, and has a
fixed runtime and input size. The runtime, input size, target latency
together can be used to solve Eq. (1) for a minimum bandwidth
allocation required to achieve the target latency. Thus the utility
of this model is 0 below this threshold, and some positive value 𝑢𝑖
above this threshold. We choose this 𝑢𝑖 to be the accuracy of the
model. This can optionally be weighted by some set of constants
𝛼𝑖 across all models and services. We show this in Fig. 2b.

These utility curves can be composed upwards as discussed in
[11] to obtain a utility curve for each tier, for the service, and
for the system overall. We then use the utility curves to allocate
bandwidth in a max-min fair way [6] across the services, except
we modify the final allocation step within each service, choosing to
give all that service’s bandwidth to the single best model that will
get utility from it, rather than sharing at utility-ratios as is done in
the original utility curve literature. This allows the overall system
to achieve higher accuracy across services by prioritizing running
those services on the cloud that benefit the overall system the most.

3 FUTURE DIRECTIONS
We see a number of open questions to follow this work. First, we
observe an opportunity to co-optimize offload in cases where in-
puts are shared between multiple services. For example, if Service
A takes Camera 1 and 2, and Service B takes Camera 2 and 3 as
input, then allocating more bandwidth to Service A’s inputs makes
it "cheaper" to upgrade Service B. This should be reflected in the
derived utility curves. Second, understanding how improvements
to intermediate service quality affects overall vehicle safety is an
open problem and may influence the optimal composition of utility
curves. Finally, cars sharing the same cell tower may benefit un-
evenly from additional bandwidth, and intelligently allocating this
bandwidth among vehicles can maximize fleet-wide safety.

2



REFERENCES
[1] Automated Vehicles for Safety. https://www.nhtsa.gov/technology-innovation/

automated-vehicles-safety.
[2] Scaling waymo one safely across four cities this year. https://waymo.com/blog/

2024/03/scaling-waymo-one-safely-across-four-cities-this-year/, March 2024.
[3] National Highway Traffic Safety Administration. Collision between vehicle

controlled by developmental automated driving system and pedestrian. https:
//www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf, mar 2018.

[4] Autoware. Autoware User’s Manual - Document Version 1.1. https://tinyurl.com/
2v2jkk9n.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are Few-Shot learners. May
2020.

[6] Zhiruo Cao and EWZegura. Utility max-min: an application-oriented bandwidth
allocation scheme. In IEEE INFOCOM ’99. Conference on Computer Communi-
cations. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. The Future is Now (Cat. No.99CH36320), volume 2,
pages 793–801 vol.2. IEEE, 1999.

[7] Henry Claypool, Amitai Bin-Nun, and Jeffrey Gerlach. Self-Driving Cars: The
Impact on People with Disabilities. Newton, MA: Ruderman Family Foundation,
2017.

[8] Gemini Team. Gemini: A family of highly capable multimodal models. December
2023.

[9] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E Gonzalez, and Ion Stoica. D3:
A Dynamic Deadline-Driven approach for Building Autonomous Vehicles. In
Proceedings of the Seventeenth European Conference on Computer Systems, pages
453–471, 2022.

[10] Ionel Gog, Sukrit Kalra, Peter Schafhalter, MatthewA.Wright, Joseph E. Gonzalez,
and Ion Stoica. Pylot: A Modular Platform for Exploring Latency-Accuracy
Tradeoffs in Autonomous Vehicles. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 8806–8813. IEEE, 2021.

[11] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin
Vahdat. BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, pages 1–14, New York, NY, USA, August
2015. Association for Computing Machinery.

[12] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque,
Lingjia Tang, and Jason Mars. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. In Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 751–766, 2018.

[13] National Highway Traffic Safety Administration. Traffic Safety Facts (2017 Data).
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812687.

[14] Peter Schafhalter, Sukrit Kalra, Le Xu, Joseph E. Gonzalez, and Ion Stoica. Lever-
aging cloud computing to make autonomous vehicles safer, 2023.

[15] Daniel Seita and Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy
Davis, Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan Frankle,
Naveen Rao, Ali Ghodsi. The shift from models to compound AI systems. https:
//bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/. Accessed: 2024-2-
20.

[16] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient
Object Detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[17] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. LLaMA: Open and efficient foundation language models. February 2023.

[18] Nicolo Valigi. Lessons learned building a self-driving car on ROS. In ROSCon
Madrid 2018, Mountain View, CA, September 2018. Open Robotics.

3

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://waymo.com/blog/2024/03/scaling-waymo-one-safely-across-four-cities-this-year/
https://waymo.com/blog/2024/03/scaling-waymo-one-safely-across-four-cities-this-year/
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://tinyurl.com/2v2jkk9n
https://tinyurl.com/2v2jkk9n
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812687
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	1 Introduction
	2 A Tiered Approach
	3 Future Directions
	References

