
Context-Aware Streaming Perception in Dynamic
Environments

Gur-Eyal Sela1, Ionel Gog1⋆, Justin Wong1, Kumar Krishna Agrawal1, Xiangxi
Mo1, Sukrit Kalra1, Peter Schafhalter1, Eric Leong1, Xin Wang2, Bharathan

Balaji3⋆⋆, Joseph Gonzalez1, and Ion Stoica1

1 University of California, Berkeley
2 Microsoft Research

3 Amazon

Abstract. Efficient vision works maximize accuracy under a latency
budget. These works evaluate accuracy offline, one image at a time.
However, real-time vision applications like autonomous driving operate
in streaming settings, where ground truth changes between inference
start and finish. This results in a significant accuracy drop. Therefore,
a recent work proposed to maximize accuracy in streaming settings on
average. In this paper, we propose to maximize streaming accuracy for
every environment context. We posit that scenario difficulty influences
the initial (offline) accuracy difference, while obstacle displacement in
the scene affects the subsequent accuracy degradation. Our method,
Octopus, uses these scenario properties to select configurations that
maximize streaming accuracy at test time. Our method improves tracking
performance (S-MOTA) by 7.4% over the conventional static approach.
Further, performance improvement using our method comes in addition
to, and not instead of, advances in offline accuracy.

1 Introduction

Recent works like EfficientDet [26], YOLO [3], and SSD [16] were designed for
real-time computer vision applications that require high accuracy in the presence
of latency constraints. However, these solutions are evaluated offline, one image
at a time, and do not consider the impact of increase in inference latency on
the application performance. In real-time systems such as autonomous vehicles,
the models are deployed in an online streaming setting where the ground truth
changes during inference time as shown in Figure 1a. To evaluate performance
in streaming settings, Li et al. [12] proposed a modified metric that measures
the model performance against the ground truth at the end of inference. They
evaluated object detection models in a streaming fashion, and found that the
average precision of the best performing model drops from 38.0 to 6.2, and picking
the model that maximizes streaming average precision reduces the drop to 17.8.
⋆ Now at Google Research.

⋆⋆ Work unrelated to Amazon.



2 G.-E. Sela et al.

tinference_init tinference_end
Δtlatency

(A) (B)

Compute

(a) In online streaming settings, the envi-
ronment changes during inference. Stream-
ing accuracy is computed by evaluating the
prediction run on ground truth A against
ground truth B.

100 150 200 250
Inference latency (ms)

20

30

40

Av
er

ag
e 

sc
or

e

S-MOTA
MOTA

(b) Offline and streaming accuracy of a
tracker of increasing model size. While the
offline MOTA (orange, y-axis) of the model
increases as inference latency (x-axis) in-
creases, its streaming MOTA (S-MOTA in
blue, y-axis) decreases.

Fig. 1: Streaming accuracy deviates from offline accuracy because the
ground truth changes during inference.

We confirm the findings of Li et al. [12], and extend their analysis to object
tracking. The standard metric for object tracking is MOTA (multiple object
tracking accuracy) [18,11], and we refer to its streaming counterpart as S-MOTA.
Figure 1b shows that larger models with higher MOTA deteriorate in S-MOTA for
the Waymo dataset [28] as the higher latency widens the gap between ground truth
between inference start and finish. The MOTA of the largest model (EfficientDet-
D7x) is 38.9 while the S-MOTA is 16.2. The model that maximizes S-MOTA is
EfficientDet-D4 with MOTA of 32.1 and S-MOTA of 26.7.

Since environment context varies, to further analyze the tradeoffs between
latency and accuracy, we identify the model that maximizes the S-MOTA of
1-second video segment scenarios in the Waymo dataset. We observe that the best
performing model varies widely from scenario to scenario (Figure 2). Scenarios
that are difficult (e.g., sun glare, drops on camera and reflection) and still
(e.g., standing cars in intersection) show (Figure 2 center) benefit from stronger
perception while incurring marginal penalty from the latency increase. On the
other hand, simple and fast scenes with rapid movement (e.g., turning, in Figure 2
left), behave the opposite, where performance degrades sharply with latency.
As a result, at the video segment-level the optimization landscape of streaming
accuracy looks vastly different than on aggregate (Figure 1b).

In this paper, we propose leveraging contextual cues to optimize S-MOTA
dynamically at test time. The object detection model is just one of several choices
that we refer to as metaparameters to consider in an object tracking system. Our
method, called Octopus, optimizes S-MOTA at test time by dynamically tuning
the metaparameters. Concretely, we train a light-weight second-order model to
switch between the metaparameters using a battery of environment features
extracted from video segments, like obstacle movement speed, obstacle proximity,
and time of day.

Our contributions in this work can be summarized as:
• We are the first to analyze object tracking in a streaming setting. We show
that the models that maximize S-MOTA change per scenario and propose that



Context-Aware Streaming Perception 3

A: Simple, fast B: Difficult, still C: Difficult, slow

100 200

50

100

S-MOTA
MOTA

100 200 100 200
Inference latency (ms)

Sc
en

ar
io

 sc
or

e

Fig. 2: Offline and streaming accu-
racies in three different scenarios.
While offline MOTA (orange, y-axis) of
the EfficientDet [26] models increases
as inference latency (x-axis) increases,
streaming MOTA (S-MOTA in blue, y-
axis), responds depending on the sce-
nario context (frames). Compare these
plots to Fig. 1b, which shows the same
on average over the entire dataset.

the optimization tradeoffs are a result of scene difficulty as well as obstacle
displacement.
• We present a novel method of S-MOTA optimization that leverages contextual
features to switch the object tracking configuration at test-time.
• Our policy improves tracking performance (S-MOTA) by 7.4% over a static
approach by evaluating it on the Waymo dataset [28]. We improve S-MOTA by
3.4% when we apply this approach on the Argoverse dataset [5].

2 Related Works

Latency vs. accuracy. Prior works have recognized the tension between latency
and accuracy in perception models [3,7,9,26], and examined facets of the tradeoff
between decision speed vs. accuracy [24]. However, these works study this tradeoff
in offline static settings. Li et al [12] examine this tradeoff in streaming settings,
where the ground truth of the world changes continuously. They show that
conventional accuracy misrepresents perception performance in such settings,
and proposed streaming accuracy. Their results were shown in detection (as well
as semantic segmentation [6]), so we first verified that the idea also holds in
tracking. Further, while Li et al. maximize streaming accuracy on average, we
expose how the environment context plays a crucial role on its behavior. We
leverage the context to dynamically maximize streaming accuracy at test time.
Model serving optimization and dynamic test-time adaptation. To re-
duce the inference latency, techniques such as model pruning [8,13,17] and quanti-
zation [23,29,31] have been proposed. While these techniques focus on effectively
reducing the size of the models, our focus is on the policy: when and where to do
it, in order to optimize accuracy in streaming settings. These techniques could be
applied to reduce the latency of the models we use. Most similar to our setting
are works that leverage context to dynamically adjust model architecture at test
time to reduce resource consumption [10,27] or to improve throughput [25]. This
work employs a similar approach in leveraging insight about latency vs. accuracy
tradeoff in AV (autonomous vehicle) perception.
Inferring configuration performance without running. Several existing
works achieve resource savings by modeling from data how a candidate con-
figuration would perform without actually running it. Hyperstar [19] learns to
approximate how a candidate hyperparameter configuration would perform on a



4 G.-E. Sela et al.

dataset without training. Chameleon [10] reduces profiling cost of configurations
for surveillance camera detection by assuming temporal locality among profiles.
One key differentiating factor with our work is that the prior works were designed
for a hybrid setting where some profiling is allowed. In our case, the strict time
and compute constraints in the AV setting [14] restrict this approach, requiring
an approximation-only method like Octopus.

3 Problem Setup

We first lay out the problem formulation (§3.1). Next, after an introduction of
the Octopus dataset (§3.2), we measure the accuracy opportunity gap between
the global best policy [12] and the optimal dynamic policy (§3.3). Finally, we
perform a breakdown analysis of the components needed in order to optimize
streaming accuracy at test time (§3.4).

3.1 Problem formulation

Given real-time video stream as a series of images, we consider the inference of
an AV pipeline (obstacle detection and tracking) on this stream. Let S denote the
mean S-MOTA score of the tracking model, which depends on the values of the
metaparameters H, such as object detection model architecture and maximum
age of tracked objects. Currently, the metaparameters h ∈ H are chosen using
offline datasets, and are kept constant during deployment [12]. We refer to this
method as the global best approach for statically choosing global metaparameters
(hglobal), which are expected to be best across all driving scenarios.

In contrast, in this work we study whether the S-MOTA score S can be
improved by dynamically changing h every ∆τ at test time. The metaparameters
we choose at each time period [τ, τ +∆τ) is hτ , and the corresponding score-
optimal values is h∗

τ .

3.2 The Octopus dataset

To generate the Octopus dataset (D), we divide each video of a driving dataset
into consecutive segments of duration ∆τ . We run the perception pipeline with
a range of values of metaparameters H, and record the S-MOTA score for each
segment shτ . We assign the optimal h∗

τ to the metaparameters that achieve the
highest S-MOTA score (i.e., the optimal S-MOTA score s∗τ ). The segment duration
∆τ is chosen to be short. This allows more accurately studying the performance
potential of dynamic streaming accuracy optimization, because decision-making
over smaller intervals generally performs better.

We generate the Octopus dataset by recording metaparameter values hτ

and the corresponding S-MOTA scores shτ of the Pylot AV pipeline [7] for the
Argoverse and Waymo datasets [5,28]. We execute Pylot’s perception consisting
of a suite of 2D object detection models from the EfficientDet model family [26]
followed by the Simple, Online, and Real-Time tracker [2]. For each video scenario,
we explore the following metaparameters:



Context-Aware Streaming Perception 5

Table 1: Dynamically changing metaparameters creates an accuracy oppor-
tunity gap. The streaming accuracy (S-MOTA) of the global best metaparameters
hglobal is 6.1 points lower on average than that of the optimal metaparameters h∗

τ .
Similarly, there is a 3.2 gap in MOTA (top).

Method Dataset MOTA↑ MOTP↑ FP↓ FN↓ IDsw↓

Global best Waymo 37.3 78.1 21515 543193 11615
Optimal Waymo 40.5 77.6 15738 532678 9137
Global best Argoverse 63.0 82.1 6721 43376 1284
Optimal Argoverse 70.8 81.0 5772 34210 828

Method Dataset S-MOTA↑ S-MOTP↑ S-FP↓ S-FN↓ S-IDsw↓

Global best Waymo 25.1 72.2 33616 633159 11212
Optimal Waymo 31.2 71.0 28907 590847 6997
Global best Argoverse 49.4 75.2 13485 55484 1092
Optimal Argoverse 57.9 74.1 9562 48354 708

• Detection model architecture: selects the model from the EfficientDet
family of models, which offers different latency vs. accuracy tradeoff points.
• Tracked obstacles’ maximum age: limits the duration for which the tracker
continues modeling the motion of previously-detected obstacles, under the
assumption of temporary occlusion or low detection confidence (flickering).

Other metaparameters had limited effect on performance (Appendix A).
We run every metaparameter configuration in a Cartesian product of selected

values for each metaparameter, and record latency metrics, detected objects,
and tracked objects. The resulting 18 metaparameter configurations yield ≈
18, 000 trials. We make this dataset public (https://github.com/EyalSel/
Contextual-Streaming-Perception).

3.3 Accuracy opportunity gap

In order to study if the global best metaparameters hglobal offer the best accuracy
in all driving scenarios, we split the Octopus dataset (D) into train (Dtrain)
and test (Dtest) sets. Next, we compute global best metaparameters (hglobal) as
the configuration that yields the highest mean S-MOTA score across all video
segments in Dtrain. We denote hglobal’s mean S-MOTA scores on the train and
test set as sglobaltrain and sglobaltest , respectively. Similarly, we denote the mean S-MOTA
scores of h∗

τ (i.e., optimally changing metaparameters) as s∗train and s∗test.
We define the S-MOTA opportunity gap between the optimal dynamic metapa-

rameters and the global best metaparameters as the upper bound of s∗test−sglobaltest .
We repeat the same calculation for MOTA. In Table 1, we show the opportunity
gap for the Argoverse and Waymo datasets [5,28] using ∆τ = 1s. We conclude
that optimally choosing the metaparameters at test time offers a 6.1 (Waymo)
and 8.5 (Argoverse) S-MOTA improvement on average, along with reductions in
streaming false positives/negatives and streaming ID switches.

Of note, if offline accuracy were to increase uniformly across all configurations
and scenarios, the performance improvement of the dynamic approach over
the static baseline is expected to persist. This applies to the opportunity gap

https://github.com/EyalSel/Contextual-Streaming-Perception
https://github.com/EyalSel/Contextual-Streaming-Perception


6 G.-E. Sela et al.

shown above (the optimal improvement), as well as for any dynamic policy
improvement in this space. This means that performance improvement achieved
by dynamic optimization come in addition to, and not instead of, further advances
in conventional (offline) tracking.

3.4 Streaming accuracy analysis

We approach dynamic configuration optimization as a ranking problem [15], and
solve it by learning to predict the difference in score of configuration pairs in a
given scenario context [30]. We decompose this learning task into predicting the
difference in (i) MOTA, and (ii) accuracy degradation during inference. To our
knowledge we’re the first to perform this analysis.

Decomposition. Streaming accuracy (S-MOTA) is tracking accuracy against
ground truth at the end of inference, instead of the beginning (MOTA) [12]. Offline
accuracy (MOTA) degrades as a result of change in ground truth during inference.
The gap between MOTA and S-MOTA is defined here as the “degradation”.
Therefore, S-MOTA is expressed as S − D where S is MOTA and D is the
degradation. The difference in S-MOTA between two configurations is (S1 −
S2)− (D1 −D2). This decomposition separates the difference in S-MOTA of two
configurations into two parts:
• (S1−S2) is the difference in offline accuracy. This difference originates from the
MOTA boost, which is affected by (i) the added modeling capacity influenced
by the scene difficulty for detection, a specific case of the more general example
difficulty [1], and (ii) the max-age choice which depends on the scene obstacle
displacement [32].
• (D1−D2) is the difference in accuracy degradation. This may be derived from:
a. the difference configuration latencies and b. scene obstacle displacement.

Predicting both components to optimize streaming accuracy. At test-time,
S1 − S2 and D1 −D2 are predicted for each scenario. We find that accurately
predicting both components per environment context is necessary to realize the
opportunity gap (see §3.3). First, we show that perfectly predicting D1 − D2

(∆D∗) and S1 − S2 (∆S∗) (Table 2, top left) yields 31.2 S-MOTA, the same as
the optimal policy h∗

τ on Waymo (Table 1 bottom panel, row 2). Then, we predict
D1 −D2 and S1 − S2 on average across all scenarios for each configuration (∆D
and ∆S respectively in Table 2). Combining ∆D and ∆S (Table 2, bottom-right)
yields 25.1 S-MOTA, the same as the global best policy hglobal score on Waymo
(Table 1 bottom panel, row 1). The hybrid-optimal policies (Table 2 top-right and
bottom-left) achieve 1.8 (26.9− 25.1) and 2.7 (27.8− 25.1) of the 6.1 (31.2− 25.1)
optimal policy opportunity gap. Taken together, these results demonstrate the
need to accurately predict both the change in MOTA (S1−S2) and in degradation
(D1 −D2) per scenario in order to optimize S-MOTA at test time.



Context-Aware Streaming Perception 7

∆D∗ ∆D

∆S∗ 31.2 26.9
∆S 27.8 25.1

Table 2: Both streaming accuracy components must be
predicted per scenario in order to realize the full dynamic
policy’s opportunity gap. ∆D∗ is optimal degradation predic-
tion, ∆S∗ is optimal offline gap prediction. ∆D and ∆S are the
corresponding global-static policies.

4 Octopus: Environment-Driven Perception

We propose leveraging properties of the AV environment context (e.g., ego speed,
number of agents, time of day) that can be perceived from sensors in order to
dynamically change metaparameters at test time. We first formally present our
approach for choosing metaparameters, which uses regression to infer a ranking
of metaparameter configurations (§4.1). Then, we describe the environment
representation that allows to effectively infer each component of the streaming
accuracy (§4.2).

4.1 Configuration Ranking via Regression

In order to find the metaparameters hτ that maximize the S-MOTA score shτ for
each video segment, Octopus first learns a regression model M . The model predicts
shτ given the metaparameters hτ and the representation of the environment eτ
for the period τ . Following, Octopus considers all metaparameter values, and
picks the metaparameters that give the highest predicted S-MOTA.

Executing the model M at the beginning of each segment τ requires an
up-to-date representation of the environment. However, building a representation
requires the output of the perception pipeline (e.g., number of obstacles). Octopus
could run the current perception configuration in order to update the environment
before executing the model M , but this approach would greatly increase the
response time of the AV. Instead, Octopus makes a Markovian assumption, and
inputs the environment representation of the previous segment eτ−1 to the model
M .

M(hτ , eτ−1) = ŝhτ (1)

Thus, it is important to limit the segment length ∆τ as the longer a segment is,
the more challenging it is to accurately predict the scores due to using an older
environment representation (see §5.1 for our methodology for choosing ∆τ).

The model is trained using the mean squared error loss. We choose the
metaparameters that the model predicts as the highest score. Let sglobalτ denote
the S-MOTA score obtained with hglobal metaparameters, which by definition
is a lower bound of the optimal S-MOTA score s∗τ (i.e., sglobalτ ≤ s∗τ ). Thus, in
order to pick the best metaparameters, Octopus can only predict shτ relative to
sglobalτ . As a result, Octopus utilizes the following as the final loss:

L =
1

N

N∑
i=0

(
r̂hi − clip((shi − sglobali ), ϵ)

)2

(2)



8 G.-E. Sela et al.

where N is the size of the training data and r̂hi is the relative S-MOTA score
predicted by the model M , r̂hi = ŝhi − sglobali .

Finally, Octopus clips by lower bounding the predictions by sglobali − ϵ as the
predictions significantly below sglobali are irrelevant to the optimization problem.
Moreover, by clipping the predictions, Octopus reduces the dynamic range of the
regressor and makes it easier to predict the higher S-MOTA scores.

4.2 Environment Representation

We can represent the environment context eτ by capturing the characteristics
of the video segment. In order to keep the decision-making latency small, we
eschew more complex learned representation designs. Instead, we developed hand-
engineered features from sensors and the outputs of the object detection model
following prior work by Nishi et al. [20], where the features were used to predict
human driving behavior. We collect the features per frame and then aggregate
by averaging across frames in the video segment. Unless otherwise specified, we
use the 10th percentile, mean, and 90th percentile of the following features:
1. Bounding box speed is the distance traveled by an object in pixel space
across two frames. This feature infers the speed of objects, and thus it is
important for capturing obstacle displacement to predict the streaming accuracy
degradation.
2. Bounding box self IoU is the Intersection-over-Union (IoU) of an object’s
bounding box in the current frame relative to the previous frame. Along with
the bounding speed, this feature helps isolate the change in size of an obstacle,
as it moves towards or away from the ego vehicle.
3. Number of objects is measured per frame, and indicates the complexity of
a scene as the more objects in a scene, the more likely the AV is to encounter
object path crossings and occlusions (scene difficulty). Therefore, this feature
signals when to prioritize for high offline accuracy configurations that are robust
to object occlusions.
4. Obstacle longevity is the number of frames for which an obstacle has been
tracked. Lower obstacle longevity implies more occlusion as obstacles enter and
leave the scene, making perception more difficult. This feature also guides the
choice of tracking metaparameters as low obstacle longevities correlate with
lower tracking maximum age giving better performance.
5. Ego driving speed is the speed at which the AV is traveling, and indicates
the environment in which the AV is driving (e.g., highway vs. city).
6. Ego turning speed is the angle change of the AV’s direction between
consecutive frames. This feature helps differentiate the source of apparent
obstacle displacement between obstacle movement and ego movement.
7. Time of day hints if a high-accuracy configuration is required to handle
challenging scenes (e.g., night driving, sun glare at sunset).

We compute these feature statistics for different bounding box size ranges
in order to reason about obstacle behavior depending on the detection model



Context-Aware Streaming Perception 9

strength needed for their accurate detection. For example, higher offline accuracy
models do not confer better streaming accuracy if the obstacles in the detectable
size range move too rapidly for the longer detection inference time to keep up
with.

Note that the choice of metaparameters in each video segment changes the
configuration, and hence the outputs of the tracking pipeline. Therefore, the
resulting environment representation is no longer independently and identically
distributed (i.i.d), making it challenging to use traditional supervision techniques.
To keep the data distribution stationary during train time, we use the object
detection model as given by the global best metaparameters hglobal. While this
training objective is biased considering that the features may be derived from
any configuration, we find that it reduces variance during training, and works
better than using features derived from the ground truth.

We concatenate the metaparameters h and the environment representation
vector eτ , and then use a supervised regression model to predict the score,
optimizing using the loss given in Eq. (2).

In addition, we compare our method to a conventional CNN model approach
(ignoring its resource and runtime requirements) in Appendix I.

5 Experiments

Next, we analyze our proposed approach. The subsections discuss the following:
1. Setup (§5.1): Description of Datasets and Model Details
2. Main results (§5.2): What is the performance improvement conferred by
the dynamic policy over the static baseline?
3. Explainability (§5.3): I. Does the learned policy behavior match human
understanding of the driving scenario? II. Where is the learned policy similar
to and different from the optimal policy? III. How are scenarios clustered by
metaparameter score? IV. What is the relative importance of the hand-picked
features and of the metaparameters towards S-MOTA optimization?
4. Ablation study (Appendix H): How do various ranking implementation
choices affect the final performance?

5.1 Methodology

We evaluate on the Argoverse and Waymo datasets [5,28], covering a variety of
environments, traffic, and weather conditions. We do not use the private Waymo
test set as it does not support streaming metrics. However, we treat the Waymo
validation set as the test set, and we perform cross validation on the training
dataset (798 videos for training, and 202 videos for validation). Similarly, we
divide the Argoverse videos into 75 videos for training, and 24 for validation.
In addition, we follow the methodology from Li et. al [12] in order to create
ground truth 2D bounding boxes and tracking IDs, which are not present in the
Argoverse dataset. We generate these labels using QDTrack [22] trained on the
BDD100k dataset, which is the highest offline accuracy model available.



10 G.-E. Sela et al.

In our experiments, we run object detectors from the EfficientDet architec-
ture [26] on NVIDIA V100 GPUs, and the SORT tracker [2] on a CPU (simulated
evaluation on faster hardware is in Appendix J). We chose to use the EfficientDet
models because they are especially optimized for trading off between latency
and offline accuracy, and because they are close to the state-of-the-art. The
EfficientDet models were further optimized using Tensor RT [21], which both
reduces inference latencies to less than 250ms (the latency of the largest model,
EfficientDet-D7x) and decreases resource requirements to at most 3 GPUs. We
use these efficient models to investigate the effect of optimizing two metaparame-
ters: detection model and tracking max age (see §3.2 for details). We compile 18
configurations of the AV perception pipeline by exploring the Cartesian product
of the values of the two metaparameters (see Listing 1.1).

1 # Metaparameters
2 detection-model = {EfficientDet: 3, 4, 5, 6, 7, 7x}
3 tracking-maximum-age = {1, 3, 7}

Listing 1.1: Values for detection and tracking metaparameters.

We implement Octopus’s policy regression model as a Random Forest [4]
using Eq. (2) to choose metaparameters for video segment length ∆τ = 1s. We
describe training details in Appendix B.
Policy Runtime Overhead. Every step ∆τ , the Octopus policy applies Ran-
dom Forest regression for all the 18 perception pipeline configurations in order
to predict the best one to apply in the next step. Due to the lightweight policy
design, inference on all 18 configurations has a latency of at most 6ms using a
single Intel Xeon Platinum 8000 core. As a result, the policy decision finishes
before the sensor data of the next segment arrives, and thus does not affect
latency of the perception pipeline. Moreover, Octopus pre-loads the perception
model weights (13.86GB in total in our experiments) and forward pass activations
in the GPU memory (32GB), and thus actuates metaparameter changes quickly.

5.2 Main results

We compare the Octopus policy with the optimal policy (h∗
τ ) and the global best

policy (hglobal) as proposed by Li et al. [12]. In addition, following the discussion
in §4.2, we show ablations of the Octopus policy in order to highlight the relative
contribution in both the setting of predictive and close-loop metaparameter
optimization. Concretely, we include the following setups that Octopus can use
to optimize the metaparameters at time t:
• Ground truth from current segment : features are derived from the sensor data
and the labels at time t.
• Ground truth from previous segment : features are derived from the sensor data
and the labels at time t−∆τ .
• Closed-loop prediction from previous segment : features are derived from the
sensor data and the output of the perception pipeline for the previous segment
(i.e., at time t−∆τ).



Context-Aware Streaming Perception 11

In Table 3 we show the tracking accuracy results for the Waymo and Argoverse
datasets. The results show that the Octopus policy with closed-loop prediction
outperforms the global best policy by 1.9 S-MOTA (Waymo) and 1.7 S-MOTA
(Argoverse). Both the optimal and Octopus policies achieve further accuracy
increases using features derived from the current segment, further illustrating
how rapidly configuration score changes over time. The consistent accuracy
improvements across the two datasets show that leveraging environment context
to dynamically optimize streaming accuracy provides substantial improvements
over the state-of-the-art. Moreover, as discussed in §3.3, streaming accuracy
improvement over the global best policy will likely persist independently of
innovation in offline accuracy of the underlying perception models.

Table 3: Streaming tracking accuracy results on two datasets.
(a) Waymo

Method S-MOTA↑ S-MOTP↑ S-FP↓ S-FN↓ S-IDsw↓

Global best 25.1 72.2 33616 633159 11212

Optimal 31.2 71.0 28907 590847 6997
Optimal from the prev. segment 27.2 71.2 38631 603777 8092

Octopus with:
Ground truth from current segment 27.9 72.3 31489 608870 8966
Ground truth from prev. segment 27.3 72.7 31056 612862 9103
Prediction from prev. segment 27.0 72.8 30272 615780 9511

(b) Argoverse

Method S-MOTA↑ S-MOTP↑ S-FP↓ S-FN↓ S-IDsw↓

Global best 49.4 75.2 13485 55484 1092

Optimal 57.9 74.1 9562 48354 708
Optimal from the prev. segment 51.9 74.0 12652 52804 810

Octopus with:
Ground truth from current segment 53.2 74.9 11447 52638 917
Ground truth from prev. segment 51.6 75.1 11348 54502 1010
Prediction from prev. segment 51.1 74.9 12062 54469 1008

S-MOTA vs. S-MOTP. Table 3 highlights that both Octopus and optimal
policy occasionally deteriorate S-MOTP, inversely to the improvement in S-
MOTA. This result reflects on a broader pattern where in streaming settings
bounding boxes in general lag after the ground truth, even if by a small enough
margin to be counted as true positives. S-MOTP, which is weighted by the IOU
between correct predictions and the ground truth is especially hurt as a result.
S-MOTA, which just counts the number of false positives, is less affected by this.
We provide a longer analysis of this tradeoff/pareto-frontier between S-MOTA
and S-MOTP in Appendix D.

5.3 Explainability

We survey various aspects of the metaparameter optimization problem, and
qualitatively compare the global best (baseline), the optimal, and the Octopus
(learned) policies.



12 G.-E. Sela et al.

O
ctopus Policy

G
lobal Best Policy

Segment 1 Segment 12 Segment 15

Octopus switches 

to D3

Octopus switches 

from D4 to D7x

Fig. 3: Busy Intersection Scenario. Left: The S-MOTA score of each τ = 1s
segment for the Octopus (learned), global best, and optimal policies. Right: The
front-facing camera feed. Red bounding-boxes represent the ground truth, and orange
represent the pipeline’s predictions using the policy’s configuration choice.

D3 D4 D5 D6 D7 D7x
1

3

7

751

178

27

1026

326

33

26

51

60

208

325

171

14

11

13

98

190

458
Octopus Policy

D3 D4 D5 D6 D7 D7x
716

215

577

316

292

214

67

111

141

152

212

186

27

138

125

166

113

272
Optimal Policy

Nu
m

be
r o

f S
eg

m
en

ts

EfficientDet Model

Tr
ac

ki
ng

 M
ax

 A
ge

Fig. 4: Policy decision frequency.
The configuration choice frequency (color
intensity) of the Octopus policy (left) and
of the optimal policy (right). The global
best configuration is EfficientDet-D4 with
tracking max age of 1, emphasized with
gray stripes.

I. Case study: Busy Intersection. Figure 3 shows a scenario where the ego
vehicle enters a busy intersection. The scenario is divided into three phases, where
the learned (Octopus) policy adaptively tunes the metaparameter to varying road
conditions similarly to the optimal policy plan. First, the ego vehicle approaches
the intersection with oncoming traffic on the left. The vehicles in the distance
cannot be picked up by any of the candidate models. The learned policy chooses
D4, the same model as the global best policy. Then, as the light turns yellow
and the ego vehicle comes to a stop first in the queue, the learned policy adapts
by increasing the strength of the model to D7x. The perception pipeline is now
able to detect the smaller vehicles in the opposing lane and adjacent to the
road. The optimal policy makes a similar decision while the global best policy
remains with the D4 choice, incurring a net performance loss. Finally, as vehicles
in the cross-traffic start passing and occluding the vehicles in the background, the
learned policy returns to the lower latency D3 model. This scenario illustrates
how the learned policy can select the best model in each phase of the scenario,
adapting to the change in driving environment.
II. Policy action heatmap. In Figure 4, we visualize the learned policy in
comparison to the optimal policy. As we expect, the learned policy often selects
the global best configuration (D4-1), but expands out similarly to the optimal
policy when performance can be improved by changing configurations. This result
illustrates how, contrary to common belief that onboard perception must have
low latency (e.g. under 100ms [28]), higher perception latencies are tolerable
and even preferable in certain environments. The Octopus policy learns to take
advantage of this when it opts for higher offline accuracy models.
III. Scenarios are clustered by metaparameter score.



Context-Aware Streaming Perception 13

MOTA

D3
D4
D5
D6
D7
D7x

Op
tim

al
 m

od
el

st
re

ng
th

S-MOTA

Fig. 5: The impact of the ac-
curacy degradation incurred
in online streaming context is
scenario dependent. Each point
is a 1s driving scenario. Its color
is the model that maximizes offline
accuracy (left) and streaming accu-
racy (right).

D3 D4 D5 D6 D7 D7x
1.5
1.0
0.5
0.0
0.5
1.0
1.5

z-
sc

or
e

D3 D4 D5 D6 D7 D7x D3 D4 D5 D6 D7 D7x
EfficientDet Model

Tracking Max Age
1 3 7

Fig. 6: Three centroids of the con-
figuration score distribution: (i) pref-
erence for low max age (left), (ii) pref-
erence for offline accuracy (middle), and
(iii) preference for low latency (right).
The three clusters account for 34% of the
dataset.

Here, we evaluate whether scenarios are grouped by common metaparameter
score behaviors. To this end, we first visualize the scenario score space (explained
below) as a t-SNE plot and then perform more formal centroid analysis.

To this end, each video segment of length ∆τ = 1s is vectorized by computing
the MOTA score difference (Sc−Shglobal

) and degradation difference (Dc−Dhglobal
)

for every metaparameter configuration c and the global best configuration hglobal

(see §3.4). These values are then concatenated and normalized (z-score) across
each scenario.

Cluster visualization. We visualize this space in a t-SNE plot in Figure 5.
The scenario segment points are colored according to the model that optimizes
MOTA (left) and S-MOTA (right). We observe a non-uniform impact of accuracy
degradation on the optimal model choice in different video segment regions.
This varying effect illustrates that S-MOTA deviates from MOTA setting on an
environment context-dependent basis. For case-study analysis of points in the
t-SNE please see Appendix F.

Centroid analysis. We now perform a more formal clustering analysis that
reveals modes of metaparameter optimality.

We perform K-means clustering, with k=8 on the z-score space. Figure 6 shows
centroids of three representative scenario clusters (right to left): (i) scenarios
that benefit from lower latency detection. (ii) scenarios that benefit from higher
accuracy detection, and (iii) scenarios that primarily benefit from a lower tracking
max age, and to a lesser extent from lower latency detection. These distinct
modes reflect that scenarios are grouped around similar metaparameter behaviors,
corroborating with variation in scene difficulty and obstacle displacement. The
rest of the scenario cluster visualizations are in Appendix G.
IV. Feature and configuration metaparameter importance.

Feature importance. To study the relative importance of the environment
features used in our solution (described in §4.2), we show the feature importance
scores derived from the trained Random Forest regressor in Table 4a. The mean
bounding box self-IOU and speed together constitute over half of the normalized



14 G.-E. Sela et al.

Table 4: Importance study
(a) Feature importance (Regression)

Feature Importance Score Feature Importance Score

Mean BBox self IOU 0.304 BBox bin [665, 1024) 0.087
Mean BBox Speed 0.200 BBox bin [1024, 1480) 0.071
Num. BBoxes 0.063 BBox bin [1480, 2000) 0.055
BBox Longevity 0.076 BBox bin [2000, 2565) 0.040
Ego movement 0.096 BBox bin [2565, ∞) 0.417
Time of Day 0.008

(b) Metaparameter importance (Regression)

Metaparameter S-MOTA↑ S-MOTP↑ S-FP↓ S-FN↓ S-IDsw↓

Global best 25.1 72.2 33616 633159 11212
Detection-model 27.6 72.4 26116 615771 11254
Tracking-max-age 25.6 71.9 39400 625184 8973
Both 27.9 72.3 31489 608870 8966

importance score, as they are predictive of the accuracy degradation that higher-
latency detection models would incur. Aggregate bounding box statistics that
capture scene difficulty, such as the average number and longevity of the bounding
boxes per frame, are also useful for prediction.

Configuration metaparameter importance. In Table 4b, we evaluate the gains
attributed to each metaparameter by only optimizing one metaparameter at a
time, fixing the other parameter to the value in the global best configuration. We
do this to ablate the performance shown in Table 3, where they are optimized
together. In both cases, the models were trained on the ground truth and the
present. Although the detection model choice is the primary contributor, the
additional choice of occlusion tolerance (max age) further contributes to the
achieved performance. We also observe how the performance gain when optimizing
the tracker’s maximum occlusion tolerance (see §3 for details) does not combine
additively with the improvement in the detection model optimization.

6 Conclusions

Streaming accuracy is a much more accurate representation of tracking for
real-time vision systems because it uses ground truth at the end of inference to
measure performance. In this study we show the varying impact that environment
context has on the deviation of streaming accuracy from offline accuracy. We
propose a new method, Octopus, to leverage environment context to maximize
streaming accuracy at test time. Further, we decompose streaming accuracy into
two components: difference in offline accuracy MOTA and the degradation, and
show that both must be inferred in every scenario to achieve optimal performance.
Octopus improves streaming accuracy over the global best policy in multiple
autonomous vehicle datasets.
Acknowledgements. We thank Daniel Rothchild and Horia Mania for helpful
discussions.



Context-Aware Streaming Perception 15

References

1. Baldock, R., Maennel, H., Neyshabur, B.: Deep learning through the lens of example
difficulty. Advances in Neural Information Processing Systems 34, 10876–10889
(2021) 6

2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple Online and Realtime
Tracking. In: Proceedings of the 23th IEEE International Conference on Image
Processing (ICIP). pp. 3464–3468 (2016) 4, 10

3. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: Optimal Speed and Accuracy
of Object Detection. arXiv preprint arXiv:2004.10934 (2020) 1, 3

4. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001) 10
5. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,

Carr, P., Lucey, S., Ramanan, D., et al.: Argoverse: 3D Tracking and Forecasting
with Rich Maps (2019) 3, 4, 5, 9

6. Courdier, E., Fleuret, F.: Real-time segmentation networks should be latency aware.
In: Proceedings of the Asian Conference on Computer Vision (2020) 3

7. Gog, I., Kalra, S., Schafhalter, P., Wright, M.A., Gonzalez, J.E., Stoica, I.: Pylot: A
Modular Platform for Exploring Latency-Accuracy Tradeoffs in Autonomous Vehi-
cles. In: Proceedings of IEEE International Conference on Robotics and Automation
(ICRA) (2021) 3, 4

8. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both Weights and Connections
for Efficient Neural Networks. In: Proceedings of the 28th International Conference
on Neural Information Processing (NeurIPS). pp. 1135–1143 (2015) 3

9. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,
Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/Accuracy Trade-Offs for
Modern Convolutional Object Detectors. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017) 3

10. Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., Stoica, I.: Chameleon: Scalable
Adaptation of Video Analytics. In: Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM). pp. 253–266 (2018)
3, 4

11. Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S.: Tracking
the trackers: an analysis of the state of the art in multiple object tracking. arXiv
preprint arXiv:1704.02781 (2017) 2

12. Li, M., Wang, Y., Ramanan, D.: Towards Streaming Perception. In: Proceedings of
the European Conference on Computer Vision (ECCV) (2020) 1, 2, 3, 4, 6, 9, 10

13. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime Neural Pruning. In: Proceedings of the
31st International Conference on Neural Information Processing Systems (NeurIPS).
pp. 2178–2188 (2017) 3

14. Lin, S.C., Zhang, Y., Hsu, C.H., Skach, M., Haque, M.E., Tang, L., Mars, J.: The
Architectural Implications of Autonomous Driving: Constraints and Acceleration.
In: Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). pp. 751–766 (2018) 4

15. Liu, T.Y., et al.: Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval 3(3), 225–331 (2009) 6

16. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
SSD: Single shot multibox detector. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 21–37. Springer (2016) 1

17. Luo, J.H., Wu, J., Lin, W.: Thinet: A Filter Level Pruning Method for Deep Neural
Network Compression. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 5058–5066 (2017) 3



16 G.-E. Sela et al.

18. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: A benchmark
for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016) 2

19. Mittal, G., Liu, C., Karianakis, N., Fragoso, V., Chen, M., Fu, Y.: HyperSTAR:
Task-Aware Hyperparameters for Deep Networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8736–8745
(2020) 3

20. Nishi, K., Shimosaka, M.: Fine-Grained Driving Behavior Prediction via Context-
Aware Multi-Task Inverse Reinforcement Learning. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). pp. 2281–2287. IEEE (2020) 8

21. NVIDIA: Tensor RT. https://developer.nvidia.com/tensorrt 10
22. Pang, J., Qiu, L., Li, X., Chen, H., Li, Q., Darrell, T., Yu, F.: Quasi-dense similarity

learning for multiple object tracking. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 164–173 (2021) 9

23. Park, E., Ahn, J., Yoo, S.: Weighted-entropy-based Quantization for Deep Neural
Networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5456–5464 (2017) 3

24. Pleskac, T.J., Busemeyer, J.R.: Two-stage dynamic signal detection: a theory of
choice, decision time, and confidence. Psychological review 117(3), 864 (2010) 3

25. Shen, H., Han, S., Philipose, M., Krishnamurthy, A.: Fast Video Classification via
Adaptive Cascading of Deep Models. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 3646–3654 (2017) 3

26. Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and Efficient Object Detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2020) 1, 3, 4, 10

27. Wang, X., Yu, F., Dou, Z.Y., Darrell, T., Gonzalez, J.E.: Skipnet: Learning Dynamic
Routing in Convolutional Networks. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 409–424 (2018) 3

28. Waymo Inc.: Waymo Open Dataset. https://waymo.com/open/ 2, 3, 4, 5, 9, 12
29. Xu, Y., Wang, Y., Zhou, A., Lin, W., Xiong, H.: Deep Neural Network Compres-

sion with Single and Multiple Level Quantization. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 32 (2018) 3

30. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyper-
parameter tuning. In: Artificial intelligence and statistics. pp. 1077–1085. PMLR
(2014) 6

31. Zhao, R., Hu, Y., Dotzel, J., De Sa, C., Zhang, Z.: Improving Neural Network
Quantization without Retraining using Outlier Channel Splitting. In: International
Conference on Machine Learning (ICML). pp. 7543–7552 (2019) 3

32. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 474–490. Springer
(2020) 6

https://developer.nvidia.com/tensorrt
https://waymo.com/open/

	Context-Aware Streaming Perception in Dynamic Environments

